HemoPoint® H2 Microcuvettes

Procedure No. 3010

For the quantitative determination of hemoglobin in capillary, venous or arterial whole blood. **CLIA Complexity: Waived**

Intended Use

The HemoPoint® H2 microcuvettes are intended to be used in the HemoPoint® H2 Photometer and the HemoCue® B-Hemoglobin Photometer. The reagents/microcuvettes and the photometer form an analytical system.

Summary and Principle

The HemoPoint® H2 system is intended to be used for the quantitative determination of hemoglobin (Hgb) concentration in human blood. It consists of a photometer instrument and individual single-use microcuvettes filled with reagents. Using the microcuvette, a small amount of capillary, venous or arterial blood is taken up by capillary action. The microcuvettes are intended to be used once only and must be disposed of after use as potentially infectious waste, in accordance with the current regulations applicable to your establishment. The HemoPoint® H2 system is designed for use in medical practices and in clinical laboratories to assist in medical diagnostics. In addition, it can be used in emergency and intensive care units and in medical facilities such as blood donor sessions and blood banks. Blood sampling and operating the HemoPoint® H2 system should be carried out by trained personnel with sound knowledge of the system. The HemoPoint® H2 cuvettes can also be used in combination with the HemoCue® photometer.

The recognized reference method for total hemoglobin is the cyanmethemoglobin method, which is also known as the cyanmethemoglobin method. The blood sample is diluted 1:251 with a reagent buffering solution. Here the erythrocytes are hemolyzed and the bivalent iron in oxyhemoglobin and deoxyhemoglobin becomes oxidized by sodium nitrite NaNO₂ to trivalent iron in methemoglobin. Existing and formed methemoglobin and azide ions from sodium azide Na₃N₃ form a colored complex which exhibits maximal absorption at 540 and 575 nm and hence it can be quantitatively determined photometrically.

Principles of the Procedure

In the HemoPoint® H2 system, the use of microcuvettes with short light pathways makes it possible to analyze undiluted blood. The filled microcuvette is inserted into the HemoPoint® H2 photometer, the color produced by the chemical reaction in the cuvette is measured, and the hemoglobin level is calculated and displayed.

For this purpose, light is directed through the blood sample and the absorption is measured. From the amount of light absorbed by the sample, the concentration of the hemoglobin in the cuvette can be calculated using the Beer-Lambert Law. Light emitting diodes (LED’s) are used as light sources and a photodiode is used to detect the light. The light emitting diodes utilize the central wavelengths 570 nm (for measurement) and 880 nm (for turbidity compensation).

The Microcuvette

The plastic microcuvette consists of a clear body with a cavity which takes up approximately 10 µL of blood which combines with the dry reagent chemistry. The optical distance between the cuvette walls is fixed and permits photometric determination of the hemoglobin in undiluted blood samples.

The Chemistry Principle

In order to use the azide methemoglobin method in undiluted blood, three reagents are necessary: sodium deoxycholate dissolves and disperses the cell walls of the red blood corpuscles. Hence the hemoglobin is not available free in the solution. The bivalent ion of the oxyhemoglobin and the deoxyhemoglobin becomes oxidized by sodium nitrite NaNO₂ to trivalent iron in methemoglobin. Existing and formed methemoglobin and azide ions from sodium azide Na₃N₃ form a colored complex which exhibits maximal absorption at 540 and 575 nm and hence it can be quantitatively determined photometrically.

Reagents

HemoPoint® H2 Microcuvettes, Cat. No. 3011

40% w/w sodium deoxycholate, 20% sodium azide, 20% w/w sodium nitrite and 20% w/w non-reactive ingredients.

Warnings and Precautions

Microcuvettes are designed for in-vitro diagnostic use only. The reagents which coat the inner walls of the microcuvettes are harmful and must not be swallowed. Wear suitable protection (gloves) at all times when handling blood samples. Please note that all human blood samples or products must be handled as potential infectious waste per your local regulations.

Storage

HemoPoint® H2 microcuvettes are to be stored solely in the original container and at room temperature 59 – 86°F (15 – 30°C). **DO NOT refrigerate!** Use cuvettes within 3 months after opening container. Document the initial opening date on the container label in the space provided. Only remove one microcuvette at a time from the container and then immediately close the lid. The microcuvettes are analyzed optically in the HemoPoint® H2 photometer.

Measurement light must pass through the sample cuvette to the photo detector with the least possible interference. It is therefore crucial not to touch the optical eye of the cuvette with fingers, dirty or sharp objects.

Sample Collection and Preparation

The HemoPoint® H2 Photometer can be used with capillary, venous, or arterial blood. Use EDTA, heparin or heparin/fluoride as anticoagulants, preferably in solid form, to avoid dilutional effects. Venous and arterial blood samples may be used if the blood collected is not more than 24 hours old and the samples have been stored refrigerated 35 – 46°F (2-8°C). Prepare stored samples for measurement as follows:

1. Remove sample tube from the refrigerator and bring it to room temperature.
2. Mix the sample tube well. (i.e. by a mechanical rotator or hand inversion at least 10 times).

Procedure

Refer to the HemoPoint® H2 User’s Guide (or manual of the HemoCue® instrument) for proper use of the photometer.

Materials Provided

HemoPoint® H2 Microcuvettes, Cat.No. 3010-050

Materials Required But Not Provided

HemoPoint® H2 or HemoCue® Photometer

Instructions For Use (Capillary)

1. Make sure that the Photometer is ready for use. See the User's Guide (or manual of the HemoCue® instrument) for proper use of the photometer.

2. Make sure that your patient is sitting comfortably.

3. There should be a good blood circulation in the hand from which you wish to take blood, e.g., it should be warm and relaxed.

4. Lightly massage the fingers, in order to stimulate circulation.

5. Place the blood sample in the cuvette holder, and the lid immediately.

6. Press lightly on the fingertip and puncture with a suitable sampling device on the side of the cuvette holder, and the sampling device immediately.

7. In case of air bubbles in the optical eye, discard the microcuvette and take another sample using a new microcuvette.

8. Place the microcuvette in the holder of the photometer and follow the instructions in the manual for proper use of the photometer.

9. Hold the tip of the microcuvette tip in the middle of the drop of blood and let the cavity fill in one step. In case of air bubbles in the optical eye, discard the microcuvette and take another sample using a new microcuvette.

10. In order to avoid contamination of the cuvette holder,
Quality Control

The HemoPoint® H2 AutoCheck performs an internal check of the photometer’s optic system every time the cuvette holder is opened. If additional regulatory quality control checks are required, the following checks are recommended: (1) The control cuvette supplied with the photometer can be used for a simple check of the photometer’s calibration. (2) Good Laboratory Practices recommend the daily use of external controls to assure that the microcuvettes and the photometer are performing correctly. For this purpose, we recommend the use of HemoPoint® H2 Hemoglobin Controls, Cat. No. 3000-601. Do not use cyanmethemoglobin standards with this test.

Use of HemoPoint® H2 Cuvettes on HemoCue® Analyzer

To ensure correct performance, validation of HemoCue® Analyzer with the HemoPoint® H2 cuvettes is required initially and each time the instrument is serviced or its software is upgraded. This validation is accomplished using the HemoPoint® H2 Hemoglobin Controls. The controls are tested on the instrument and the obtained values must be within the established ranges. If values are outside the ranges, contact Technical Service.

Results

The test result is displayed directly on the screen of the HemoPoint® H2 or the HemoCue® photometer. No calculations are necessary. The test is linear up to 23.5 g/dL.

Performance Characteristics

<table>
<thead>
<tr>
<th>Precision</th>
<th>HemoPoint® H2</th>
<th>HemoCue® device</th>
<th>HemoPoint® H2 microcuvettes</th>
<th>HemoCue® microcuvettes and operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within-run</td>
<td>1. Y = 0.998x</td>
<td>2. R = 0.999</td>
<td>3. N = 286, duplicate measurements</td>
<td>N = 286, duplicate measurements</td>
</tr>
<tr>
<td>between-days</td>
<td>4. Range 23.5 g/dL to 23.85 g/dL</td>
<td>5. Summary of results from 4 (Clinical Sites)</td>
<td>5. Summary of results from 4 (Clinical Sites)</td>
<td>5. Summary of results from 4 (Clinical Sites)</td>
</tr>
</tbody>
</table>

Limitations of the Procedure

1. The microcuvette sample can be measured immediately or within 10 minutes at the latest, otherwise false results may be obtained.
2. Air bubbles in the optical eye, caused by inadequate filling of the microcuvette cavity, may cause false results. Discard the microcuvette and take another sample using a new microcuvette.
3. Ensure that you do not hold the microcuvette at its filling end, because this may contaminate the optical eye.
4. In order to avoid contamination of the cuvette holder, remove surplus blood from the outside of the microcuvette.
5. All results above 23.5 g/dL or equivalent must be confirmed by laboratory method.
6. Sulfhemoglobin is not measured by this method. Carboxyhemoglobin and turbidity due to leukocytosis or hyperlipemia do not interfere.

Expected Values

The following hemoglobin values are considered normal:

<table>
<thead>
<tr>
<th>Group</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult males</td>
<td>13.0 – 18.0 g/dL</td>
</tr>
<tr>
<td>Adult females</td>
<td>11.0 – 16.0 g/dL</td>
</tr>
<tr>
<td>Children</td>
<td>11.0 – 16.0 g/dL</td>
</tr>
<tr>
<td>Infants (postnatal)</td>
<td>10.0 – 14.0 g/dL</td>
</tr>
</tbody>
</table>

Due to a wide range of conditions which affect normal values, it is recommended that each laboratory establish its own “normal” range.